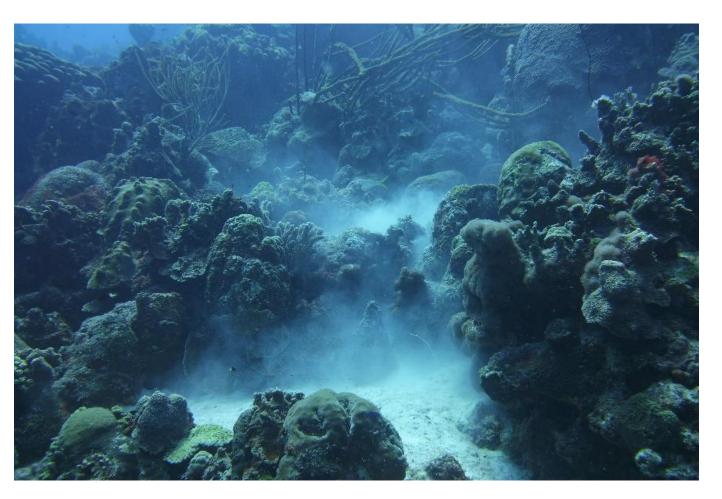


<u>Student Cohort for Undergraduate</u> (Marine) <u>Bioscience</u> Abroad

Midland College SCUBA Cohort


UT System LSAMP Conference

August 2, 2022

Student Cohort for Undergraduate (marine) Bioscience Abroad (<u>SCUBA</u>)

THE UNIVERSITY OF TEXAS SYSTEM

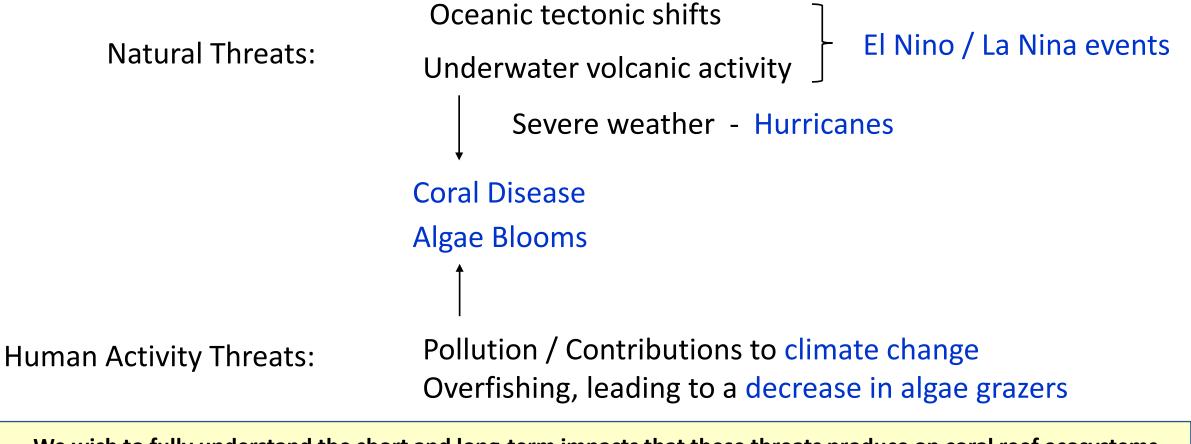
Mission:

- Provide undergraduate students an *international* field research experience in the Caribbean Sea
- 2) 2-year community college students targeted, but the opportunity is not exclusive to that group.
- Research projects focused
 on aspects of coral reef
 ecosystems in the Caribbean
 Sea.

Motivations

We want to get students "in the water" to do science in a foreign country

Motivations


- Coral reefs are of the densest locations of biodiversity on the planet
 - All coral reefs occupy just 0.5% of the ocean seafloor, but provide a home for up to 50% of all ocean life
- All around the world in clear, shallow (~20 ft to 150 ft), warm waters

Coral Reefs Face Several Challenges

We wish to fully understand the short and long-term impacts that these threats produce on coral reef ecosystems and the mechanisms involved with these impacts

What you want to see is this:

Lots of healthy coral

This is a particularly great example of Diploria strignosa

LOUIS STOKES

What you DON'T want to see is this:

Diseased coral

 An example of Yellow Band
 Disease on an Orbicilla anularis

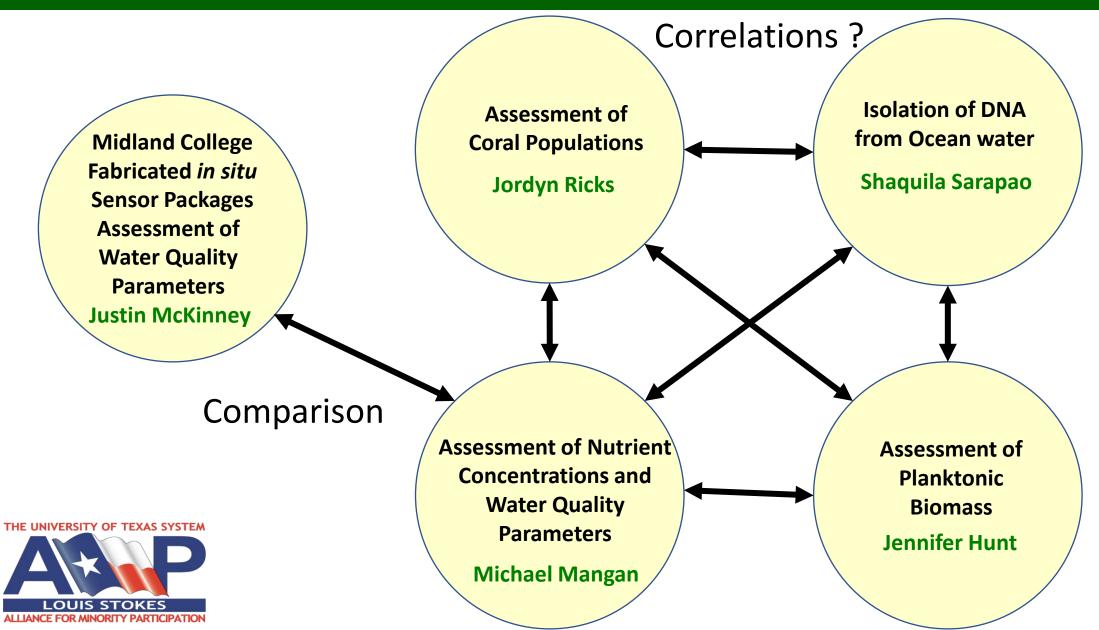
2022 LSAMP SCUBA Student Cohort

Jennifer Hunt Tyler Junior College

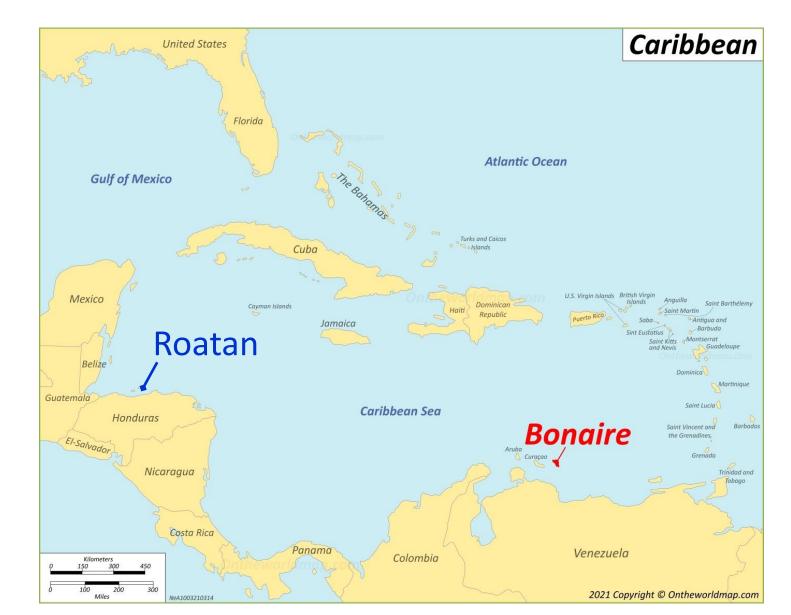
Michael Mangan Midland College

Justin McKinney Midland College

Jordyn Ricks Midland College


Shaquila Sarapao Midland College

The Projects



SCUBA Research Locations

In prior years we have conducted research at Roatan, Honduras for a *longitudinal* study

This year we have conducted research at Bonaire (Netherlands) for a comparative study


Bonaire Dive Sites

Sample acquisition occurred at five dive sites

- Rock Pile
- Leonora's Reef
- 1000 Steps
- 18th Palm
- Alice in Wonderland
- Sites were chosen to provide a geographic and developmental variety

Assessment of Coral Populations at Bonaire June 19 – July 1 2022

Jordyn Ricks

Motivations and Current Techniques

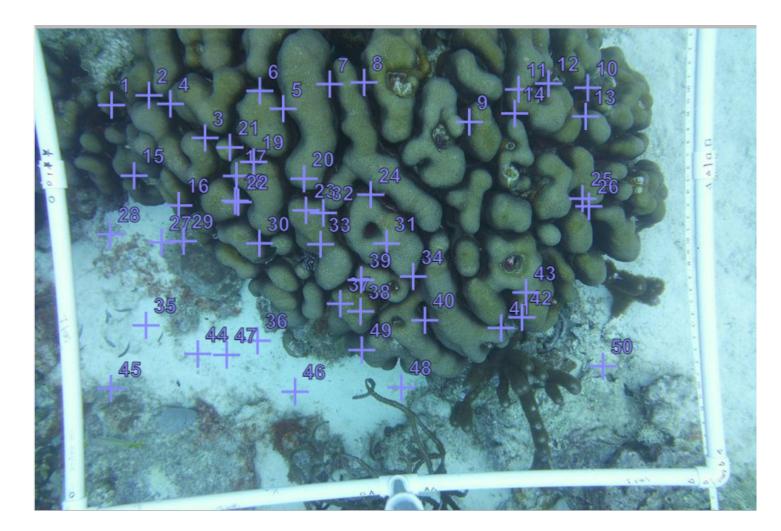
In order to assess the overall health of a coral reef, we need to have an estimate of the coral population there

There are several accepted methodologies to survey a coral reef populations. We elected to utilize a transect belt method:

- 100 ft tape measure is laid out
- Photographers take pictures at 1 m intervals on either side of the tape measure
- Photographs uploaded to **CoralNet Software**

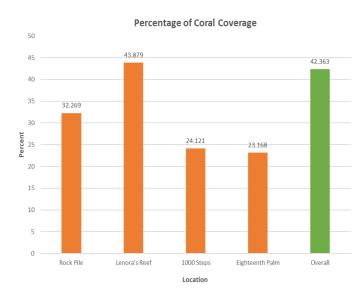
Image 2: Two Divers Use Transect Belt

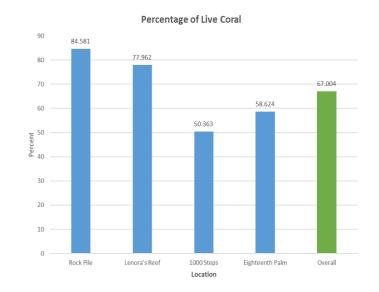
Image 3: Photograph Taken Using Transect Belt



CoralNET

- CoralNet Software is an annotation program which randomly selects 50 point on the photograph
- The annotator identifies what coral species lies under the selected point
- After 25 photos have been annotated CoralNet uses machine learning to annotate the remaining photos in the set




Results

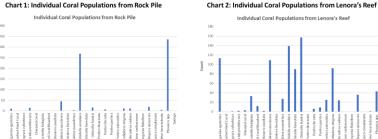
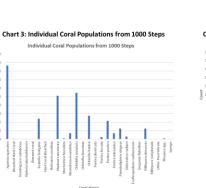
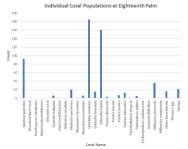


Chart 6: Percentage of Coral Coverage at All Locations and Overall


Chart 7: Percentage of Live Coral at All Locations and Overall

100

Individual Coral Populations from Lenora's Reef


160 140

120

100 June 100

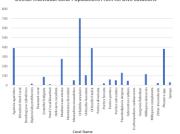

60

Chart 4: Individual Coral Populations from Eighteenth Palm

Chart 5: Individual Coral Populations from All Dive Locations

Overall Individual Coral Populations From All Dive Locations

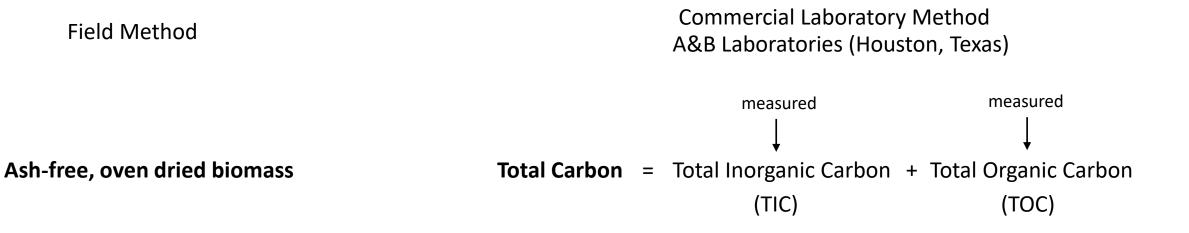
THE UNIVERSITY OF TEXAS SYSTEM

Conclusions

Conclusion

Over the four sites surveyed, the overall coverage of live coral was 42% with the percentage of live coral being 67%. The dive sites located off the shores of Klein Bonaire, Rock Pile and Lenora's Reef, showed higher rates of live coral as well as more overall coral coverage compared to the dives sites off the shores of the mainland, 1000 Steps and Eighteenth Palm, presumably because this area is heavily protected by the National Park Foundation, STINAPA. Lenora's Reef displayed the most phenotype diversity among coral species as well as the highest rate of living coral.

Assessment of Planktonic Biomass at Bonaire June 19 – July 1 2022


Jennifer Hunt

Methodology

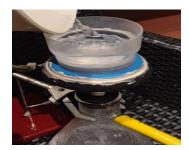
We wanted to compare two different methods of biomass assessments, both of which appear as accepted protocols in the literature.

Reliable and Accurate field measurements are desirable for several reasons:

(relatively) Low cost method

Time limitation on sample integrity (can't ship via boat because it takes weeks)

Weight limitations on air transport of samples


Protocol

(Constant mass) – (mass of Aluminum pan / filter disk) = oven dried biomass

Filter 6-gallon water sample on a glass-fiber filter disk using a vacuum pump, filter flask, and Buchner funnel Heat solid residue on dry glass-fiber filter disk / Aluminum pan holder to 102 °C in a moisture analyzer until constant mass is achieved

Reweigh residue/Aluminum pan/filter disk.

Heat solid residue on dry glass-fiber filter disk / Aluminum pan holder to 550 °C in a furnace for 4 hours.

(mass of residue/Aluminum pan/filter disk) – (mass of Aluminum pan / filter disk) = Ash

Oven dried Biomass – Ash = Ash-Free oven dried biomass

Results

Rock Pile	Oven Dried Biomass (mg/L)	Ash-Free Oven Dried Biomass (mg/L)	Total Organic Carbon (mg/L)	Total Inorganic Carbon (mg/L)	Total Carbon (mg/L)
Surface	26.42	25.36			
20ft	38.92	36.9			
40ft	7.97	7.22			
60ft	24.66	24.26			

Leonora's Reef	Oven Dried Biomass (mg/L)	Ash-Free Oven Dried Biomass (mg/L)	Total Organic Carbon (mg/L)	Total Inorganic Carbon (mg/L)	Total Carbon (mg/L)
Surface	29.45	28.71			
20ft	23.25	22.76			
40ft	59.53	58.56			
60ft	23.42	22.8			

1,000 Steps	Oven Dried Biomass (mg/L)	Ash-Free Oven Dried Biomass (mg/L)	Total Organic Carbon (mg/L)	Total Inorganic Carbon (mg/L)	Total Carbon (mg/L)
Surface	31.35	30.47	1.2	22.7	23.9
20ft	135.96	121.83	1.2	21.2	22.4
40ft	73.88	71.85	1	22.5	23.5
60ft	26.24	25.49	BRL	24.3	24.3

18 Palms	Oven Dried Biomass (mg/L)	Ash-Free Oven Dried Biomass (mg/L)	Total Organic Carbon (mg/L)	Total Inorganic Carbon (mg/L)	Total Carbon (mg/L)
Surface	87.57	85.81	1.1	23.4	24.5
20ft	27.25	26.73	BRL	24.2	24.2
40ft	42.84	41.69	BRL	24.9	24.9
60ft	119.98	118.35	1	23.7	24.7

Alice & Wonderland	Oven Dried Biomass (mg/L)	Ash-Free Oven Dried Biomass (mg/L)	Total Organic Carbon (mg/L)	Total Inorganic Carbon (mg/L)	Total Carbon (mg/L)
Surface	139.26	138.56	1.1	24	25.1
20ft	24.52	24.22	1	24.3	25.3
40ft	46.49	45.83	1.2	23.7	24.9
60ft	97.83	95.28	1	24.1	25.1

THE UNIVERSITY OF TEXAS SYSTEM

AVG = 24.4 mg/L

Conclusions

Although the two methods produce carbon measurements that are of the same order of magnitude, the ash-free oven dried biomass measurement was on average 2.8 times greater than the Total Carbon measurements

The two methods failed the F-test, meaning that the two methods produce results that are not comparable

Biomass measurements from both methods are consistent with those seen for healthy coral reef ecosystems

Hunting for Pathogenic Bacteria in Ocean Waters at Bonaire June 19 – July 1 2022

Shaquila Sarapao

Studies revealed a consortium of bacteria are present in the interface of diseased corals, with cyanobacteria being a key player

This leads to a basic question: How prolific are the cyanobacteria species implicated in coral disease in ocean water in general?

Protocol

- 1. Collect water samples
- 2. Concentrate samples with rapid bio-concentrator from InnovaPrep, concentrating one liter of each sample, eluting 200uL into 2mL tube

Instrument used high-flow single-use 0.45 um hollow fiber filter tips with the "HOLLOW" protocol

- 3. The Qiagen DNAeasy biofilm kit and protocol were used to extract DNA from the water samples and were stored in a refrigerator until further applications
- 4. Upon return to the Midland College laboratory, PCR amplification was utilized to isolate marine cyanobacteria strains using the primers
- Afterwards, the PCR products were sequenced using Thermo Fisher Scientific Invitrogen's 2% Agarose (GP) E-Gel with SYBR Safe[™] and E-Gel Simple Runner. The sequences were compared to Thermo Scientific GeneRuler 1kb plus (0.5ug/uL, 50ug).

Electrophoresis Results

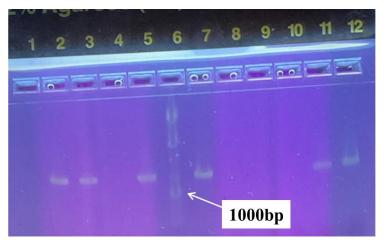


Figure 1. Gel electrophoresis results using primer 740F/1494R on samples 1-11 (left to right, column 6 being the gene ladder).



Figure 2. Gel electrophoresis results using primer 740F/1494R on samples 12-20 (left to right, column 6 being the gene ladder).

Sample	Location Depth (ft)	Primers 740F 1494R	Primers 27F 809R	Primers HEPF HEPR
1	Rock Pile 60	-	(+)	-
2	Rock Pile 40	(+)	-	-
3	Rock Pile 20	(+)	-	-
4	Rock Pile Surface	-	(+)	-
5	Leonora's Reef 60	(+)	-	-
6	Leonora's Reef 40	(+)	-	-
7	Leonora's Reef 20	-	-	-
8	Leonora's Reef Surface	-	-	-
9	A Thousand Steps 60	-	-	-
10	A Thousand Steps 40	(+)	(+)	-
11	A Thousand Steps 20	(+)	-	-
12	A Thousand Steps Surface	-	-	-
13	18 th Palm 60	-	-	-
14	18 th Palm 40	-	-	-
15	18 th Palm 20	(+)	(+)	-
16	18 th Palm Surface	-	-	-
17	Alice in Wonderland 60	(+)	-	-
18	Alice in Wonderland 40	(+)	-	-
19	Alice in Wonderland 20	-	-	-
20	Alice in Wonderland surface	-	-	-

At present, the following conclusions can be made:

- Cyanobacteria is present at different depths in all of the coral reefs observed, indicating that the bacteria is widely distributed throughout the water column.
- The enzyme for the toxic microcystin/nodularin synthetase was not present in any of the coral reefs, revealing that the cyanobacteria present in the waters lack the genes to produce the toxic product.

Assessment of Water Quality Parameters and Nutrient Concentrations at Bonaire June 19 – July 1 2022 Michael Mangan

Sonde Results

YSI 6920-V2 sonde was used to measure ph, temperature, dissolved oxygen, and salinity at prescribed depths of 20, 40, 60 ft, and at the surface at five dive sites

All measured variables were consistent across depths and locations

Table 1 - Bonaire Dive Sites - Sonde Field Data (6/20/22 - 6/29/22)

Dive Site (Date - Time)			Conductivity			Dissolved
Sample Depth	Temp °C	Temp °F	(µmhos/cm)	Salinity (ppt)	pH (S.U.)	Oxygen (mg/L)
Rock Pile (6/20/22 - 1100 hrs)						
Surface	27.5	81.5	55700	36.9	8.1	6.5
20 feet	27.5	81.5	55700	36.9	8.1	6.5
40 feet	27.6	81.7	55800	37.0	8.1	6.5
Bottom: 63.0 feet	27.5	81.5	55800	37.0	8.1	6.3
Leonora's Reef (6/22/22 - 0900 hrs)						_
Surface	27.5	81.5	55700	36.9	8.1	6.4
20 feet	27.5	81.5	55700	36.9	8.1	6.3
40 feet	27.4	81.3	55900	37.1	8.1	6.4
Bottom: 64.0 feet	27.4	81.3	55900	37.1	8.1	6.4
1000 Steps (6/26/22 - 1045 hrs)						
Surface	27.5	81.5	56100	37.2	8.1	6.5
20 feet	27.5	81.5	56100	37.2	8.1	6.5
40 feet	27.5	81.5	56100	37.2	8.0	6.5
Bottom: 63.6 feet	27.5	81.5	56100	37.2	8.0	6.4
18th Palm (6/27/22 - 1100 hrs)						
Surface	27.4	81.3	55800	37.0	8.0	6.6
20 feet	27.4	81.3	56200	37.3	8.0	6.5
40 feet	27.4	81.3	56200	37.3	8.0	6.5
Bottom: 63.0 feet	27.4	81.3	56200	37.3	8.0	6.4
Alice in Wonderland (6/29/22 - 0930 hrs)			-			
Surface	27.3	81.1	56000	37.1	8.1	6.4
20 feet	27.4	81.3	56100	37.2	8.1	6.4
40 feet	27.4	81.3	56100	37.2	8.1	6.5
Bottom: 63.0 feet	27.4	81.3	56100	37.2	8.1	6.2

Assay Results

- Fe and P measurements were below reportable limits at each measured location
- Nitrogen concentrations demonstrated consistent decrease with depth
- Strontium and Calcium concentrations were consistent across all depths and dive sites studied


а

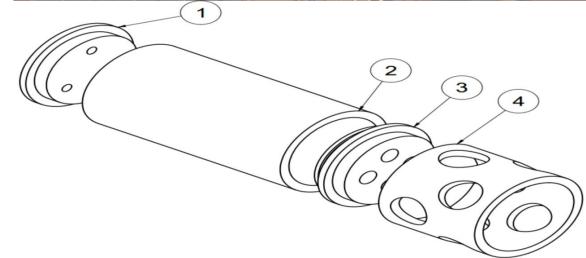
~	Lab Data (6/26/22 - 6/29/22)					
Div	e Site (Date - Time)	Calcium	Strontium			
	Sample Depth	(mg/L)	(mg/L)			
- 1	1000 Steps					
(6,	/26/22 - 1045 hrs)					
Surf	ace	459	8.42			
20 fe	eet	443	8.41			
40 fe	eet	442	8.37			
Bott	om: 63.6 feet	432	8.35			
	18th Palm					
(6,	/27/22 - 1100 hrs)					
Surf	ace	439	8.25			
20 fe	eet	422	8.28			
40 fe	eet	463	8.21			
Bott	om: 63.0 feet	436	8.32			
Ali	ice in Wonderland					
(6,	/29/22 - 0930 hrs)					
Surf	ace	453	8.48			
20 fe	eet	419	8.63			
40 fe	eet	475	8.33			
Bott	om: 63.0 feet	460	8.43			

(ne tor non and i nosphoras - 0.05 mg/ c/

Tab

29

Low-Cost, Custom Fabricated, in-situ Autonomous Sensor Arrays for Monitoring Water Quality Parameters Justin McKinney

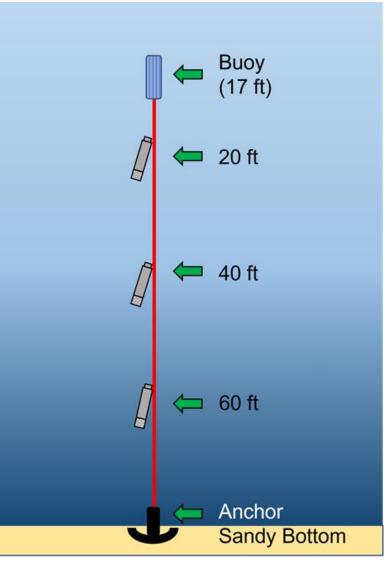

Design and Assembly

Used commercially available PVC, electronic and aquarium hobbyist equipment to keep costs low

- □ Total cost of assembly <u>\$1,018.25</u>
 - Commercial equivalent retails for ~<u>\$22,000</u>

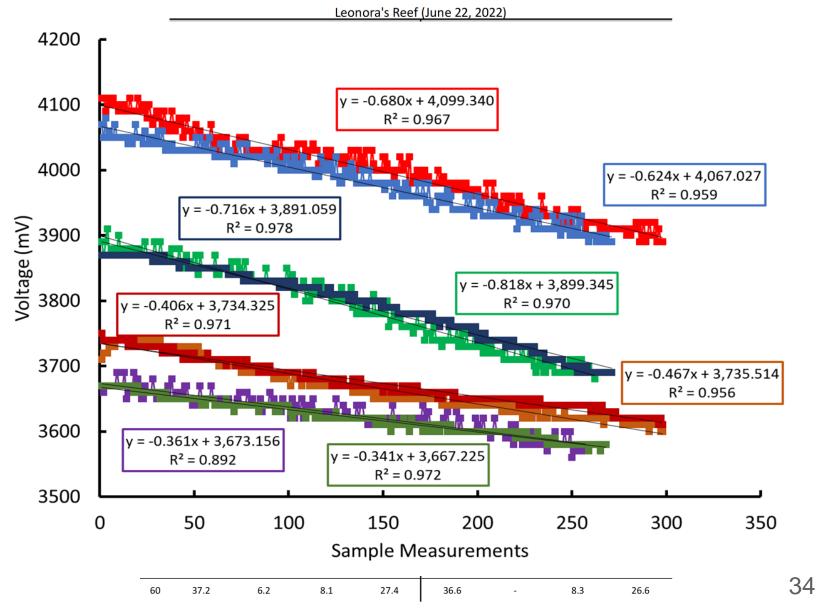
Housing and Leak Testing

- Salt water and electronics
 DO NOT work well
 together
- By pressuring a water
 based vessel and using
 probe "blanks" the
 housing could be tested
 to depths of 200 ft for 24
 hours
- □ The housing worked!



Field Testing

- Deployed three pods at 20 ft, 40 ft, and 60 ft
- Collected temperature, pH, salinity, and dissolved oxygen measurements
- Remained submerged for 24 hours at four dive sites
 - Leonora's Reef, 1000 Steps, 18th Palm, and Alice in Wonderland


Results

□ WE GOT DATA!

Data was averaged
 over the 24 hour
 period and compared
 to the sonde surveys

Battery usage was monitored and determined that it can last for five days

Research Mentors Who Contributed to the Effort

Assoc. Dean / Prof. Laura Mydlarz (UT-Arlington biology)

THE UNIVERSITY OF TEXAS SYSTEM

Prof. Marlana Mertens (Midland College microbiology)

Prof. Greg Larson (Midland College environmental biology)

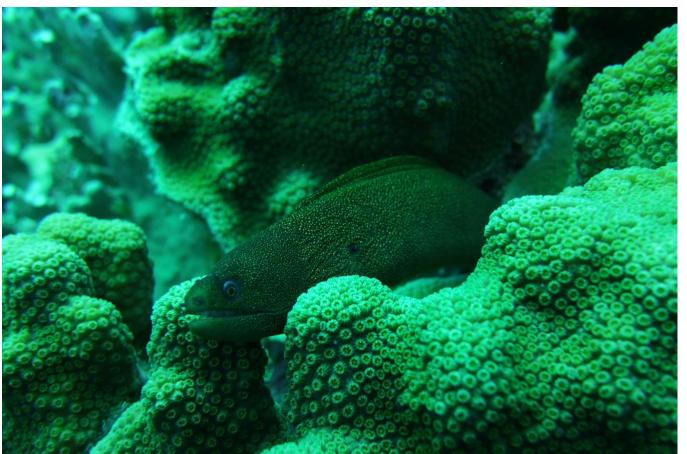
Prof. Brian Flowers (Midland College engineering)

Sara Anderson (Midland College Dive Instructor / Safety officer)

Acknowledgements

National Science Foundation UT-System LSAMP Grant

The Yarborough Foundation


Midland College

For More Information about the SCUBA Project

Thomas Ready; Ph.D. Chemistry Department Midland College <u>tready@midland.edu</u>

UT- El Paso LSAMP website: <u>lsamp (utep.edu)</u>

LOUIS STOKES